속보
VIP
통합검색

'쌕쌕' 청진기 대야 했던 숨소리 진단, 이젠 AI가 한다

머니투데이
  • 정심교 기자
  • 카카오톡 공유하기
  • 카카오톡 나에게 전송하기
  • 페이스북
  • 트위터
  • 네이버
  • 카카오스토리
  • 텔레그램
  • 문자
  • 2023.01.31 11:18
  • 글자크기조절
호흡기 질환을 가진 어린이에서 나타나는 비정상적인 숨소리 '천명음(喘鳴音)'을 인공지능(AI)으로 찾아낼 수 있게 됐다. 분당서울대병원 소아청소년과 김경훈 교수팀은 천명음을 진단하는 인공지능 모델을 개발했다고 31일 밝혔다.

천명음은 폐로 오가는 공기의 통로인 기도가 좁아지면서 압력이 강해지는 탓에 숨 쉴 때마다 가슴에서 '쌕쌕' 소리가 나는 호흡음을 가리킨다. 기도가 좁은 어린이는 천식·기관지염 등으로 천명음이 발생하는 경우가 많아, 천명음은 소아 호흡기 질환을 조기 진단하는 데 가장 중요한 지표로 활용된다.

그러나 아직 천명음을 판별하는 수단은 가슴에 청진기를 대고 직접 숨소리를 듣는 전통적인 '청진' 방식에 머물러 있었다. 객관적인 수치로 나타나는 검사법이 아니어서 의사의 경험과 판단에 따라 정확도의 차이가 날 수 있다는 점이 한계로 지적됐다.

인공지능으로 천명음을 감별하는 모델을 개발한 김경훈 소아청소년과 교수. /사진=분당서울대병원
인공지능으로 천명음을 감별하는 모델을 개발한 김경훈 소아청소년과 교수. /사진=분당서울대병원

이러한 문제를 해결하기 위해 김경훈 교수팀은 인공지능을 통해 천명음을 감별하는 알고리즘을 개발하는 연구를 수행했다. 연구팀은 기존의 유사한 연구들에서 데이터의 정교함과 모델 정확도가 임상 현장에서 활용되기에는 다소 부족하다는 점에 착안해 소아 호흡기 전문가들이 교차 검증한 실제 소아 호흡기 환자의 287명의 호흡음을 기계 학습에 사용했다.

연구팀은 "보다 정확한 예측을 가능하게 하면서도 인공지능의 학습 능력은 적절한 수준으로 유지할 수 있도록 34개 레이어(단계)의 레즈넷(ResNet; Residual neural network) 인공신경망 기술을 적용했다"고 설명했다. 레즈넷은 인공지능의 일반적인 딥러닝 모델보다 예측 정확도가 높은 기술이다.

인공신경망의 레이어는 필요보다 많을 경우 예측 정확도가 오히려 떨어질 수 있어 분석 대상에 맞는 최적의 조합을 찾는 것이 중요한데, 천명음 발견에는 레이어 34개(34-레이어)가 가장 적합하다는 게 연구팀의 설명이다. 그 결과, 개발된 알고리즘은 정확도 91.2%, 정밀도(동일 조건에서 측정한 값이 얼마나 일정하게 나타나는지 나타낸 수치) 94.4% 수준으로 임상 현장에서도 충분히 적용할 수 있는 높은 정확성과 안정성을 보였다.

또 메모리 공간을 소량만 필요로 해 향후 모바일 기기에 적용해 환자 개인별 상태를 시간·장소의 제약 없이 모니터링할 수 있게 될 전망이다.

김 교수는 "소아는 구조적으로 기도가 좁아 천명음이 발생하기 쉽고, 허파꽈리(폐포)의 표면적도 적어 천식 같은 호흡기 질환을 견딜 수 있는 능력도 어른보다 현저히 떨어진다"며 "천식 등의 호흡기 질환을 조기에 진단해 후유증을 최소화하고 개인의 상태에 맞춘 최적의 치료 전략을 수립하는 데 이번 인공지능 모델이 큰 도움 될 것"이라고 말했다.

한편, 이번 연구 결과는 네이처 출판 그룹의 온라인 학술지 '사이언티픽 리포트(Scientific Reports)' 최신 호에 실렸다.



머니투데이 주요뉴스

'외국인 폭풍 매수' 6월도 강세장 전망…증권가 "이것 담아라"

네이버 메인에서 머니투데이 구독 카카오톡에서 머니투데이 채널 추가

베스트클릭

오늘의 꿀팁

  • 뉴스 속 오늘
  • 더영상
  • 날씨는?
  • 헬스투데이

많이 본 뉴스

K-클라우드 · AI 프런티어 컨퍼런스
부동산 유튜브 정보채널 부릿지

포토 / 영상

머니투데이 SERVICE