속보
VIP
통합검색

자다 깨 화장실 가는 모습에서 힌트 얻어…'안 넘어지는 로봇' 개발

머니투데이
  • 류준영 기자
  • 카카오톡 공유하기
  • 카카오톡 나에게 전송하기
  • 페이스북
  • 트위터
  • 네이버
  • 카카오스토리
  • 텔레그램
  • 문자
  • VIEW 8,227
  • 2023.03.29 12:02
  • 글자크기조절
자료=카이스트
자료=카이스트
연기가 자욱해 앞이 안 보이는 재난 상황에서 별도의 시각·촉각 센서 도움 없이 계단을 오르내리고 나무 뿌리와 같은 울퉁불퉁한 환경 등에서도 넘어지지 않고 움직이는 사족보행 로봇 기술이 국내 연구진에 의해 개발됐다.

카이스트 전기및전자공학부 명현 교수 연구팀(미래도시로봇연구실)이 다양한 비정형 환경에서도 강인한 `블라인드 보행'을 가능케 하는 보행 로봇 제어 기술을 개발했다고 29일 밝혔다.

연구팀은 사람이 수면 중 깨어서 깜깜한 상태에서 화장실을 갈 때 시각적인 도움이 거의 없이 보행이 가능한 것에 착안해 이 기술을 개발했다. 블라인드 보행이 가능하다고 해서 붙여진 기술명은 '드림워크'(DreamWaQ), 이 기술이 적용된 로봇은 '드림워커(DreamWaQer)'라고 명명했다.

기존 보행 로봇 제어기는 기구학, 동역학 모델을 기반으로 한다. 이를 모델 기반 제어 방식이라고 표현하는 데, 특히 야지와 같은 비정형 환경에서 안정적인 보행을 하기 위해서는 모델의 특징 정보를 더 빠르게 얻을 수 있어야 한다. 그러나 이는 주변 환경 인지 능력에 많이 의존하는 모습을 보여 왔다.
본 연구팀이 개발한 제어기, 드림워크(DreamWaQ)의 개요도. 이 네트워크는 암시적 및 명시적 추정을 함께 학습하는 추정기 네트워크, 제어기로 작동하는 정책 네트워크 및 훈련 중 정책을 안내하는 가치 네트워크로 구성된다. 실제 로봇에 구현할 때는 추정기와 정책 네트워크만 사용된다. 두 네트워크 모두 로봇에 탑재된 온보드 컴퓨터에서 1ms 미만으로 실행된다.
본 연구팀이 개발한 제어기, 드림워크(DreamWaQ)의 개요도. 이 네트워크는 암시적 및 명시적 추정을 함께 학습하는 추정기 네트워크, 제어기로 작동하는 정책 네트워크 및 훈련 중 정책을 안내하는 가치 네트워크로 구성된다. 실제 로봇에 구현할 때는 추정기와 정책 네트워크만 사용된다. 두 네트워크 모두 로봇에 탑재된 온보드 컴퓨터에서 1ms 미만으로 실행된다.
이에 비해 명현 교수 연구팀이 개발한 인공지능 학습 방법 중 하나인 심층 강화학습 기반의 제어기는 시뮬레이터로부터 얻어진 다양한 환경 데이터를 통해 보행 로봇의 각 모터에 적절한 제어 명령을 빠르게 계산해 줄 수 있다.

시뮬레이션에서 학습된 제어기가 실제 로봇에서 잘 작동하려면 별도의 튜닝 과정이 필요했다면, 연구팀이 개발한 제어기는 별도의 튜닝을 요구하지 않는다는 장점도 있어 다양한 보행 로봇에 쉽게 적용될 수 있을 것으로 기대된다.

연구팀이 개발한 제어기인 드림워크는 크게 지면과 로봇의 정보를 추정하는 상황 추정 네트워크와 제어 명령을 산출하는 정책 네트워크로 구성된다.
자료=카이스트
자료=카이스트
상황추정 네트워크는 관성 정보와 관절 정보들을 통해 암시적으로 지면의 정보를, 명시적으로 로봇의 상태를 추정한다. 이 정보는 정책 네트워크에 입력돼 최적의 제어 명령을 산출하는 데 사용된다. 두 네트워크는 시뮬레이션에서 함께 학습된다.

상황추정 네트워크는 지도학습을 통해 학습되는 반면, 정책 네트워크는 심층 강화학습 방법론인 행동자-비평자 방식을 통해 학습된다. 행동자 네트워크는 주변 지형 정보를 오직 암시적으로 추정할 수 있다. 시뮬레이션에서는 주변 지형 정보를 알 수 있는데, 지형 정보를 알고 있는 비평자 네트워크가 행동자 네트워크의 정책을 평가한다.
연구진 단체사진 (왼쪽부터) 명현 교수, 이 마데 아스윈 나렌드라(I Made Aswin Nahrendra) 박사과정, 유병호 박사과정, 오민호 박사과정. 맨 앞에는 드림워크 기술이 탑재된 사족보행 로봇 드림워커/사진=카이스트
연구진 단체사진 (왼쪽부터) 명현 교수, 이 마데 아스윈 나렌드라(I Made Aswin Nahrendra) 박사과정, 유병호 박사과정, 오민호 박사과정. 맨 앞에는 드림워크 기술이 탑재된 사족보행 로봇 드림워커/사진=카이스트
이 모든 학습 과정에는 단 1시간 정도만 소요되며, 실제 로봇에는 학습된 행동자 네트워크만 탑재된다. 주변 지형을 보지 않고도, 오직 로봇 내부의 관성 센서(IMU)와 관절 각도의 측정치를 활용해 시뮬레이션에서 학습한 다양한 환경 중 어느 환경과 유사한지 상상하는 과정을 거친다. 갑자기 계단과 같은 단차를 맞이하는 경우, 발이 단차에 닿기 전까지는 알 수 없지만 발이 닿는 순간 빠르게 지형 정보를 상상한다. 그리고 이렇게 추측된 지형 정보에 알맞은 제어 명령을 각 모터에 전달해 재빠른 적응 보행이 가능하다.

드림워커 로봇은 실험실 환경뿐 아니라, 연석과 과속방지턱이 많은 대학 캠퍼스 환경, 나무뿌리와 자갈이 많은 야지 환경 등에서 보행 시 지면으로부터 몸체까지 높이의 3분의 2 정도의 계단 등을 극복함으로써 강인한 성능을 입증했다. 또 환경과 무관하게 0.3m/s의 느린 속도부터 1.0m/s의 다소 빠른 속도까지도 안정적인 보행이 가능함을 연구팀은 확인했다. 연구팀은 이번에 개발한 드림워커와 여기에 적용된 기술들을 오는 5월 말 영국 런던에서 개최되는 로보틱스 분야의 세계 최고 권위 학회 'ICRA'에서 발표할 예정이다

[머니투데이 스타트업 미디어 플랫폼 '유니콘팩토리']



네이버 메인에서 머니투데이 구독 카카오톡에서 머니투데이 채널 추가

베스트클릭

오늘의 꿀팁

  • 뉴스 속 오늘
  • 더영상
  • 날씨는?
  • 헬스투데이

많이 본 뉴스

K-클라우드 · AI 프런티어 컨퍼런스
부동산 유튜브 정보채널 부릿지

포토 / 영상

머니투데이 SERVICE